Kidney Diseases

Problem ContextThis dataset is originally from the National Institute of Diabetes and Digestive an KidneyDiseases. The objective of the dataset is to diagnostically predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset. Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females at least 21 years old of Pima Indian heritage.Dataset ContentThe datasets consists of several medical predictor variables and one target variable, Outcome. Predictor variables includes the number of pregnancies the patient has had, their BMI, insulin level, age, and so on.Tasks:1. Using KNIME platform Examine Summary Statistics2. Build a Decision Tree Workflow in KNIME3. Do the Classification Task on the dataset based on the Decision Tree you built in the previous step4. Evaluate the Performance of your Decision Tree Model by Generate a Confusion Matrix and Determine Accuracy RateWhat to submit:1. Summary Statistics of dataset (in a word document)2. Explain how did you train the decision tree model for classification (in a word document)3. Confusion Matrix results for your trained decision tree and its interpretation (in a word document)4. KNIME Workflows of your Decision Tree modelNote: Excel data attached herewith. for more information on Kidney Diseases check on this:https://en.wikipedia.org/wiki/Kidney_disease

DNP Role Presentation

Don't use plagiarized sources. Get Your Custom Essay on
Kidney Diseases
Just from $13/Page
Order Essay
                                                                                                                        ACME Writers